

REGIONE AUTÓNOMA DE SARDIGNA REGIONE AUTONOMA DELLA SARDEGNA

Cost-effective rehabilitation of public buildings into smart and resilient nano-grids using storage

Thematic Objectives: B.4 - Environmental protection, climate change adaptation and mitigation (Address common challenges in environment)
Priority: B.4.3 - Support cost-effective and innovative energy rehabilitations relevant to building types and climatic zones, with a focus on public buildings
Countries: Cyprus, Greece, Israel, Italy

Output n°: 4.1 Output Title: Tools Development for renovating public buildings with PV+ESS+DSM hybrid Activity n°: 4.1.2

Activity title: Development of a policy makers' tool for policy recommendations

July 2023

Disclaimer: This publication has been produced with the financial assistance of the European Union under the ENI CBC Mediterranean Sea Basin Programme. The contents of this document are the sole responsibility of University of Cyprus and can under no circumstances be regarded as reflecting the position of the European Union or the Programme management structure.

1 Document Info

Project Name	Cost-effective rehabilitation of public buildings into
	smart and resilient nano-grids using storage
	(BERLIN)
Funding Scheme	ENI CBC MED PROGRAMME 2014-2020
Work Package	WP4
Number	
Name of Work	Implementation of tools, cost-benefit analysis and
Package	training
Output Number	4.1
Date	31/07/2023
Authors	Angelos Nousdilis, UoWM
Contributors/	All BERLIN partners
Reviewers	
Status	Final

2 Document History

Date	Author	Action	Status
05/05/2023	Angelos Nousdilis, UoWM	First Draft	Draft
31/07/2023	Angelos Nousdilis, UoWM	Finalization	Final

3 Copyright

@ Copyright 2019-2021 The BERLIN Consortium

Consisting of

Coordinator:	FOSS Research Centre for Sustainable Energy, University of Cyprus (UCY)	Cyprus
Partners:	University of Western Macedonia	Greece
	The municipality of Eilat	Israel
	University of Cagliari	Italy
	Ben Gurion University	Israel
	Deloitte Limited	Cyprus
	Hevel Eilot Regional Council	Israel

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the BERLIN Consortium. In addition to such written permission to copy, reproduce, or modify this document in whole or part, an acknowledgment of the authors of the document and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

BERLIN

4 Contents

1	Project summary	5
2	Introduction	6
3	Technical input tab	7
4	Financial input	8
5	Incentives/regulations for PV+ESS+DSM tab	.10
6	Run tab	.11
7	Net present value (NPV) results tab	.13
8	Self-sufficiency rate (SSR) results tab	.14
9	Recommendations tab	.15

1 Project summary

In an effort to address high energy consumption in the building sector that is mainly fossil – fuelled, support rural areas and areas powered by weak grids, which are common in the MENA region, and achieve higher grid penetration of renewable energy sources (RES) while maintaining grid stability and power quality, this project aims at the implementation of cross border pilots that will support innovative and cost – effective energy rehabilitation in public buildings based on the nanogrid concept. Thus, BERLIN project focuses on the increase of photovoltaics (PV) penetration, which coupled with energy storage and demand – side management (DSM) will increase the energy efficiency (EE) of the buildings. The implementation of these technologies in a cost – effective way will result in high level of self – resilient public buildings that are green, smart, innovative, and sustainable. A total of 6 pilot buildings will be implemented by the end of the project, namely 1 in Cyprus, 2 in Greece, 2 in Israel and 1 in Italy.

The project started in September 2019 and will be completed in September 2023.

2 Introduction

The policy makers tool provides recommendations for policies and regulations that promote the adoption of the photovoltaics (PV) and energy storage systems (ESS) in public buildings with the potential for demand side management (DSM), referred here as PV+ESS+DSM scheme. Except from recommendations, it offers numerical results about (i) the profitability of PV+ESS+DSM systems in certain building types and (ii) the energy self-sufficiency of the building.

It consists of 7 tabs. The first three tabs, "Technical input", "Financial input", "Incentives/regulations for PV+ESS+DSM", are used to collect all the required input data from the user. The next tab. i.e., "Run", is used to load the inputs and execute the simulation. The last three tabs are used to display the numerical results ("NPV Results" and "SSR results"), as well as the recommendations for policies and regulations ("Recommendations"). Further information is provided within the next sections.

The policy makers tool was developed with the financial assistance of European Union under the ENI CBC Mediterranean Sea Basin Programme, under the project <u>"BERLIN – Cost-effective rehabilitation of public buildings into smart and resilient nano-grids using storage"</u>. Feel free to use the tool for your analyses.

For further information contact: Dr. Angelos Nousdilis (anousdilis@gmail.com) or Prof. Georgios Christoforidis (gchristoforidis@uowm.gr).

Please cite as: N. S. Kelepouris, A. I. Nousdilis, A. S. Bouhouras and G. C. Christoforidis, "Cost-Effective Hybrid PV-Battery Systems in Buildings Under Demand Side Management Application," in *IEEE Transactions on Industry Applications*, vol. 58, no. 5, pp. 6519-6528, Sept.-Oct. 2022, doi: 10.1109/TIA.2022.3186295.

3 Technical input tab

Here please select all the information regarding the building you want to examine. Further help on the available options will be presented by leaving your mouse on the corresponding field.

	Арр							_	×
Help on the to	ol About BERLI	N							
Technical inp	ut Financial	input	Incentives/	egulations for PV+ESS+DSM	Run	NPV Results	SSR Results	Recommendations	
				Use of the p	public bu	uilding			
What is the	main use of t	he publi	ic building?				School build	ing	▼
Annual bui	ual building consumption in kWh								20000
Choose the	hoose the range of photovoltaic (PV) system capacities to examine						0.5 to 2 kWp per 1000 kWh 1 to 3 kWp per 1000 kWh 2 to 5 kWp per 1000 kWh		
				Energy storage system (ESS) to	PV size to exa	mine		
What is the	What is the ESS to PV size rate to be examined?						0.5 kWh/kWp 1 kWh/kWp 2 kWh/kWp		
				Buildin	g locatio	n			
In which co	untry is the bu	uilding lo	ocated?				Greece		▼
				Daily flexibility leve	I of the	building loads			
Are there f (DSM) stra		i the bui	ildings that	could participate indemand	l side ma	nagement	N	Y	es
lf yes, wha	, what is the part (%) of load demand energy that can be shifted within a day?								0
			*	The policy makers tool was de Mediterranean Sea Basin Prog into smart and resilient nano-gi	ramme, ur	nder the project "B			

4 Financial input

Here please select all the information regarding:

- The electricity tariffs. In case of a Time of Use (ToU) pricing scheme, please pay attention to insert the information of the different time zones correctly:
 - Please select the starting time of the different tariff zones, in ascending order, beginning from Zone A.
 - Example 1: pricing scheme with 2 zones: 16:00-20:00 and 20:00-16:00 of the next day, two starting hours are considered in ascending order: 16:00 for Zone A and 20:00 for Zone B.
 - Example 2: pricing scheme with 3 zones: 10:00-16:00, 16:00-20:00 and 20:00-10:00 of the next day, three starting hours are considered in ascending order: 10:00 for Zone A, 16:00 for Zone B, and 20:00 for Zone C.
- The Feed-in Tariff provided to the prosumer as a reimbursement for any excess photovoltaic (PV) produced energy that is injected into the utility grid.
- The systems purchase and installation cost, including VAT.
- The discount and the inflation rate.

Further help on the available options will be presented by leaving your mouse on the corresponding field.

0	BER	LIN
---	-----	-----

MATLAB App Help on the tool About BERLIN						
Technical input Financial input	Incentives/regulations for PV+ESS+DSM	Run NPV Results	SSR Results	Recommendatio	ons	
	Electric	ity tariffs				
Flat or Time of Use (ToU) tariffs	Flat Time of Use	.,		ToU Tariff Zones	2	
		Tel 7ee e [•
	Flat / ToU Zone A	ToU Zone E			one C	
Start time of tariff zone	16 🔍 00 🔍	21 🔍 00		00	00	
Production charges (€/kWh)	0.167		0.3			0
Network charges (€/kWh)	0.02259		0.02259			0
Taxes on electricity (€/kWh)	0.02207		0			
VAT (%)	6					
	Reimburshment for exces	s photovoltaic (PV) er	nergy			
Does a Feed-in Tariif exist	Yes No	If yes, import in €/kWh				0.07
	PV and battery system purchase	e and installation cost	t (incl. VAT)			
PV and hybrid inverter cost (€/kV	V) 1000	Disco	ount rate (%)			4
ESS cost (€/kWh)	600	Infla	tion rate (%)	6) 3 4		
	The policy makers tool was deve Mediterranean Sea Basin Progra into smart and resilient nano-grid	amme, under the project "Bi				ngs

5 Incentives/regulations for PV+ESS+DSM tab

In this tab, information about the existing framework of incentive policies is collected.

承 MATLAB App						_		×
Help on the tool Al	bout BERLIN							
Technical input	Financial input	Incentives/regulations for PV+ESS	S+DSM Run	NPV Results	SSR Results	Recommendations		
		Incentives for ph	otovoltaic (PV)	system installa	ation			
Financial subsid	Financial subsidy for PV system and hybrid inverter in € 0							
Financial subsid	Financial subsidy for PV system and hybrid inverter in % of the purchase cost							0
Annual financia	Annual financial subsidy for owning a PV (e.g. tax reduction) in €/year							0
Is there an activ	ve net-metering s	cheme in place?				No	Yes	
Is there an activ	ve net-billing sche	eme in place?				No	Yes	
		Incentives & regulation	ons for energy	storage system	ns (ESS)			
Financial subsid	dy for ESS in €							0
Financial subsid	dy for ESS in % c	f the purchase cost						0
Annual financia	al subsidy for own	ing an ESS (e.g. tax reduction)	in €/year					0
Are ESSs perm	nitted by the regul	ations of electrical network ope	erator?			No) Yes	
Is the installation	on of ESS obligate	ory for new PV systems?				No	Yes	
		Incentives for d	lemand side ma	anagement (DS	M)			
Compensation	for investing in sh	iftable devices?				No	Yes	
Compensation	Compensation for electrifying thermal loads?						Yes	
	N		asin Programme, u	nder the project "B		ean Union under the ENI ective rehabilitation of pul		ings

6 Run tab

As described on the tab, the outputs of the tool are presented following three sequential steps:

- 1) Load the inputs. Once the inputs are loaded, they are validated and if all values are correctly entered, a message of successful loading will appear and the button "Run the analysis" will be enabled. If an error exists, a related warning will appear. The user has to correct the invalid hours and press again the "Load inputs" button.
- 2) Run the analysis. As soon as the inputs are successfully loaded the user has the option to run the analysis. A message of successful analysis will appear as soon as the analysis calculations are complete.

Load Inputs	
Run the analysis	Analysis completed successfully
Print the results	

3) **Print the results**. Since the analysis is successfully completed, the user can press the third button to print the results in the following three tabs.

Load Inputs	
Run the analysis	Analysis completed successfully
Print the results	Results are printed

All imported values are maintained until the tool is closed. In case the user changes some of the values in the first three tabs, the three steps have to be repeated to receive the new results.

Further help on the available options will be presented by leaving your mouse on the corresponding field.

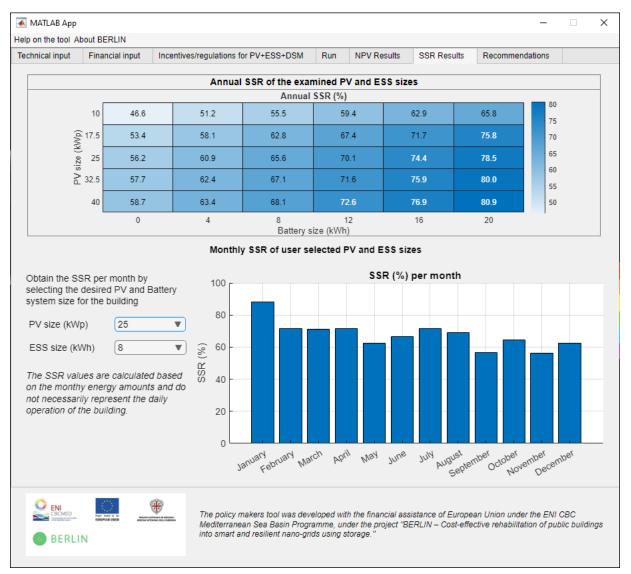
(U)	DI	
	DI	

承 MATLAB App								_		×
Help on the tool Al	out BERLIN									
Technical input	Financial inp	out Incentiv	es/regulations for PV+ES	S+DSM	Run	NPV Results	SSR Results	Recommendations		
	button "Loa button "Rur button "Prir	the analysis	" and wait until the d wait until the mes					ilts will be printed in	n the	
by the most re ii) It is assume from the first t	ecent Directi ed that charg three tabs.	ves of the Eur jing and disch	policy that incentiviz opean Commission. arging the battery fro duced based on the i	m/to the u	utility gri	d is not allowed	. The analysis is			
			Load Inputs	Inputs	success	fully loaded				
			Run the analysis							
			Print the results							
	Page Land by the SHEPFLAN SINCE			asin Progra	amme, un	der the project "B		an Union under the ENI ctive rehabilitation of put		ngs

7 Net present value (NPV) results tab

In the first figure, the NPV based on the imported data by the user is demonstrated for the different combinations of PV and battery capacity.

In the second figure, the NPV based on the imported data by the user and the modifications inserted by moving the two sliding bars is demonstrated. This figure shows the effect of the financial subsidies on the profitability of the investment on PV+ESS+DSM schemes.



8 Self-sufficiency rate (SSR) results tab

In the first figure of this tab, the annual SSR based on the imported data by the user is demonstrated for the different combinations of PV and battery capacity. SSR is defined as the portion of the load demand energy that is covered by own PV production either directly or at a later time exploiting the battery, and can be calculated as follows:

$SSR = \frac{[Consumption energy] - [Energy imported from grid]}{[Consumption energy]}$

The second figure illustrates the monthly SSR values for the PV-battery combination selected on the left-side of the figure.

9 Recommendations tab

The last tab provides the recommendations for policies and regulations that promote the PV+ESS+DSM system, aiming to enhance the self-sufficiency of buildings. By pressing the button "Export recommendations", the user can save all the presented recommendations in a Microsoft Excel file. The Excel file is separated into two sheets, one used for the policies and the other for the regulations.

chnical input	Financial input	Incentives/r	egulations for PV+ESS+DSM	Run	NPV Results	SSR Results	Recommendations	
Recommend	ations for incentive	policies for	the promotion of PV+E\$\$+D	SM system	s aiming to enha	ince the self-suff	iciency of buildings	
Drop out an	y reimbushement	for the PV e	energy injected to the grid.					*
Provide fina	incial support for t	the installation	on of smart electricity meter	ers.				
Consider th	e provision of a s	ubsidy for th	e PV system and the hybri	d inverter				
Consider th	e provision of fina	incial suppor	t for the battery system pu	irchase co	ost.			
Enhance th	e financial subsid	y for PV sys	tems when they are combi	ned with s	storage.			
Promote the	e option for seaso	nal storage	systems, such as fuel cells	, for build	ings with high ι	Inbalanced SSF	R among seasons.	
Promote the	e formation of ene	rgy commur	nities.					
Develop fina	ancial tools for rep	placing the o	ld devices with smart cont	rollable or	nes to enable D	SM.		
Introduce fi	nancial subsidies	to electrify h	eat loads (e.g., subsidy fo	r heat pur	nps).			
Promote en	ergy audits that:							
- (i) record t	he energy-consu	ming proces	ses and devices of the put	olic buildin	g, and			
- (ii) propos	e possible DSM n	neasures.						•
Recommend	lations for regulation	ons for the pr	omotion of PV+E\$\$+D\$M sy	stems aim	ing to enhance th	ne self-sufficienc	y of buildings	
Consider to	prohibit the insta	llation of PV	s without energy storage i	n public b	uildings, if a fina	ancial support is	s given.	
Introduce a	coherent regulate	ory framewo	rk for the commissioning a	nd operat	ion of storage s	systems in build	ings.	
Remove re	maining restriction	ns on the ins	tallation of storage system	IS.				
- e.g., allow	any building to ir	stall storage	along with PVs, remove	ower and	I capacity limita	tions on batteri	es.	
Develop re	gulations for seas	onal storage	systems.					
Enable the	formation of nand	grids by cor	nbining consumption and g	generatior	of neighboring	buildings of th	e same organization.	
			Export rec	ommendati	ons			
		THOMA DELLA SARROOM	The policy makers tool was de Mediterranean Sea Basin Prog into smart and resilient nano-g	ramme, un	der the project "Bl			